
B.L. Tierney
Lawrence Berkeley National Laboratory

DRAFT: 1 April 6, 2000

TCP Tuning Guide for Distributed Application on Wide Area Networks

Brian L. Tierney
Data Intensive Distributed Computing Group

Lawrence Berkeley National Laboratory

1.0 Introduction
Obtaining good TCP throughput across a wide area network usually requires some tuning. This is

especially true in NGI-like networks, where, even though there is no congestion, an application sees
only a small percentage of the total available bandwidth. This document describes several techniques
required to obtain good throughput, and describes tools for diagnosing problems.

2.0 Buffer Sizes
It is critical to use optimal TCP send and receive socket buffer sizes for the link you are using. If

the buffers are too small, the TCP window will never fully open up. If the buffers are too large, the
sender can overrun the receiver, and the TCP window will shut down (this behavior seen mainly with
Solaris). For more information, see [1] and [2].

Users often wonder why, on a network the where slowest hop from site A to site B is 100 Mbit/sec
(about 12 MB/sec), using ftp they are only get a throughput of 500 KBytes/sec. The answer is obvious
if you consider the following: Typical latency across the US is about 25 ms, and most systems use a
default TCP buffer size of either 24 or 32 KBytes. To fill a 12 MB/sec pipe with this latency requires
12 * .025 sec = 300 KB of data. Since the TCP buffer is at most 32 KB, the maximum utilization of
the pipe can be only 300/32, or 9% (1.1 MB/sec), even under ideal conditions. In fact, the buffer size
typically needs to be double the TCP congestion window size to keep the pipe full, so in reality only
5% utilization of the network is achieved, or about 500 KB/sec.

The optimal buffer size is twice the bandwidth*delay product of the link:
buffer size = 2 * bandwidth * delay

The ping program can be used to get the delay, and pchar to get the bandwidth of the slowest hop in
your path. Since ping gives the round trip time (RTT), this formula can be used instead of the
previous one:

buffer size = bandwidth * RTT.
For example, if your ping time is 50 ms, and the end-to-end network consists of all 100 BT ethernet

and OC3 (155 Mbps), the TCP buffers should be .05 sec * 10 = 500 KBytes. (When in doubt, 10
MB/s is a good assumption for network bandwidth on ESnet/vBNS/Abilene -like networks).

Two TCP settings need to be considered: The default TCP send and receive buffer size, and the
maximum TCP send and receive buffer size. Note that most of today UNIX OS's by default have a
maximum TCP buffer size of only 256 KB! For instructions on how to increase the maximum TCP
buffer, see Appendix A. Setting the default TCP buffer size greater than 128 KB will adversely affect
LAN performance. Instead, the UNIX setsockopt call should be used in your sender and receiver to
set the optimal buffer size for the link you are using. Usage of setsockopt is described in Appendix B.

3.0 Other Techniques
Other useful techniques to improve performance over wide-area networks include:

B.L. Tierney
Lawrence Berkeley National Laboratory

DRAFT: 2 April 6, 2000

• Use large data block sizes. For example, most ftp implementations send data in 8 KB blocks.
Use around 64 KB instead, as disk reads, memory copies, and network transfers are usually
faster with large data blocks. However, be careful on QoS enabled paths, as large blocks are
more likely to overflow router buffers. 32K might be better on these networks.

• Send lots of data at a time. If not enough data is sent to keep the pipe full, the TCP window will
never fully open up. In general, .5 MB or greater is a good amount to send at a time.

• Use multiple sockets. For example, to transfer a large file, send 25% of the file on each of 4
sockets in parallel. On a congested network, this often provides linear speedup! This only helps
for large read/writes. Typically 4 sockets per host is a good number to use; with more than 4 the
sockets will interfere with each other.

• Use asynchronous I/O, with a separate thread for each socket. This helps mainly on multiple
CPU hosts, and helps more on some OS's (e.g.: Solaris) than others (e.g.: Linux).

• Avoid unnecessary memory copies. Try to read the data straight into the memory location that
will later need it. For example, if the data will be displayed by an X Windows application, read
it directly into the X pixmap structure. Do not read in into a read buffer, and then copy it to the
X buffer.

4.0 Network problems
 If you still have trouble getting high throughput, the problem may well be in the network. First, use

netstat -s to see if there are a lot of TCP retransmissions. TCP retransmits usually indicate network
congestion, but can also happen with bad network hardware, or misconfigured networks. You may
also see some TCP retransmissions if the sending host is much faster than the receiving host, but TCP
flow control should make the number of retransmits relatively low.

4.1 Use pchar
The pchar tool does a pretty good job of giving hop-by-hop performance. If one hop is much

slower than to expect, this may indicate a network problem. Contact your network administrator in
this case. Note that pchar often gives wrong or even negative results on very high speed links. Its
must reliable on link that are OC3 (155 Mbps) or slower

4.2 Check the Duplex Mode
A common source of LAN trouble with 100BT networks is that the host is set to full duplex, but

the ethernet switch is set to half-duplex, or visa versa. Most newer hardware will auto-negotiate this,
but with some older hardware, auto-negotiation will sometimes fail, with the result being a working
but very slow network (typically only 1-2 Mbps). Its best for both to be in full duplex if possible, but
some older 100BT equipment only supports half-duplex. See Appendix C for some ways to check
what your systems are set to.

4.3 Use tcptrace
You can also use tcpdump to try to see exactly what TCP is doing. tcptrace is a very nice tool for

formatting tcpdump output.
 For example:

 tcpdump host myhost > /tmp/tcpdump.out
 tcptrace -Sl /tmp/tcpdump.out
 xplot /tmp/a2b_tsg.xpl

B.L. Tierney
Lawrence Berkeley National Laboratory

DRAFT: 3 April 6, 2000

An example of tcptrace results is shown in Figure 1, which shows the TCP slow start algorithm
opening up at the beginning of a data transmission.

5.0 Tools
The following tools have all been found to be useful for doing network analysis:
• iperf: currently the best tool for measuring end-to-end TCP/UDP performance

(http://dast.nlanr.net/Projects/Iperf/index.html)
• traceroute: lists all routers from current host to remote host (ftp://ftp.ee.lbl.gov/)
• pchar: hop by hop performance measurement tool

(http://www.ca.sandia.gov/~bmah/Software/pchar/)
• tcpdump: dumps all TCP header information for a specified source/destination

(ftp://ftp.ee.lbl.gov/)
• tcptrace: formats tcpdump output for analysis using xplot

(http://jarok.cs.ohiou.edu/software/tcptrace/tsg.html and ftp://mercury.lcs.mit.edu/pub/shep/)
• NetLogger : Networked application monitoring and analysis toolkit

(http://www-didc.lbl.gov/NetLogger/)
• NetTune: a library to increase the socket buffer size via an environment variable

(http://www.ncne.nlanr.net/tools/application.html)
• gsiftp: ftp client and server with built in kerberos and GSI (globus) security, and also provides

the functionality to set the TCP buffers on both the client and server
(http://www.globus.org/security/v1.1/ftp/install.html)

Many other tools are listed at the NLANR Tools Repostitory at (http://www.ncne.nlanr.net/tools).

6.0 Other Useful Links
• solaris 2.6 SACK patch: ftp://playground.sun.com/pub/sack/tcp.sack.tar.Z

Figure 1: tcptrace results showing TCP slow start

B.L. Tierney
Lawrence Berkeley National Laboratory

DRAFT: 4 April 6, 2000

• PSC Tuning Guide: http://www.psc.edu/networking/perf_tune.html

7.0 Updates
The goal is to continually update this document. Please send additions and corrections to

bltierney@lbl.gov. Note that the web-based version at http://www-didc.lbl.gov/tcp-wan.html may be
more up to date.

8.0 Acknowledgments
The work described in this paper is supported by the U. S. Dept. of Energy, Office of Science,

Office of Computational and Technology Research, Mathematical, Information, and Computational
Sciences Division (http://www.er.doe.gov/production/octr/mics/index.html), under contract
DE-AC03-76SF00098 with the University of California. This is report no. LBNL-45261.

9.0 References

[1] Semke, J. Mahdavi, M. Mathis, “Automatic TCP Buffer Tuning,” Computer Communication Review, ACM SIG-
COMM, volume 28, number 4, Oct. 1998.

[2] Tierney, B. Lee, J., Crowley, B., Holding, M., Hylton, J., Drake, F., “A Network-Aware Distributed Storage Cache
for Data Intensive Environments”, Proceeding of IEEE High Performance Distributed Computing conference
(HPDC-8), August 1999, LBNL-42896.

B.L. Tierney
Lawrence Berkeley National Laboratory

DRAFT: 5 April 6, 2000

Appendix A: Changing TCP System Default Values
On Linux, add the following to one of your boot scripts. We added the following to

/etc/rc.d/rc.local to increase the maximum buffers to 8MB and the default to 64KB.
 echo 8388608 > /proc/sys/net/core/wmem_max
 echo 8388608 > /proc/sys/net/core/rmem_max
 echo 65536 > /proc/sys/net/core/rmem_default
 echo 65536 > /proc/sys/net/core/wmem_default

 For Solaris, create a boot script similar to this (e.g.: /etc./rc2.d/S99ndd)
#!/bin/sh
increase max tcp window
Rule-of-thumb: max_buf = 2 x cwnd_max (congestion window)
ndd -set /dev/tcp tcp_max_buf 4194304
ndd -set /dev/tcp tcp_cwnd_max 2097152

increase DEFAULT tcp window size
ndd -set /dev/tcp tcp_xmit_hiwat 65536
ndd -set /dev/tcp tcp_recv_hiwat 65536
#
osver=`uname -r`
Turn on Selective Acks (SACK)
if [$osver = "5.7"]; then
 ndd -set /dev/tcp tcp_sack_permitted 2
fi

 Note that SACK comes as part of Solaris 2.7, but for solaris 2.6, you must install the SACK patch,
available from ftp://playground.sun.com/pub/sack/tcp.sack.tar.Z

 For Irix (6.4,6.5), the maximum TCP buffer doesn’t appear to be setable, and is fixed at 4 MB. To
modify the default buffer size edit the file: /var/sysgen/master.d/bsd, and set:

 tcp_sendspace=65536
 tcp_recvspace=65536

 See the PSC TCP performance tuning guide (http://www.psc.edu/networking/perf_tune.html) for
information on setting TCP parameters for other OS’s.

B.L. Tierney
Lawrence Berkeley National Laboratory

DRAFT: 6 April 6, 2000

Appendix B: C Code to set the TCP buffer size

Here is how to use the setsockopt call to set TCP buffer sizes within your application using C:
int skt, int sndsize;
err = setsockopt(skt, SOL_SOCKET, SO_SNDBUF, (char *)&sndsize,
 (int)sizeof(sndsize));

or
int skt, int sndsize;
err = setsockopt(skt, SOL_SOCKET, SO_RCVBUF, (char *)&sndsize,
 (int)sizeof(sndsize));

Here is sample C code for checking what the buffer size is currently set to:
int sockbufsize = 0;
int size = sizeof(int);

err = getsockopt(skt, SOL_SOCKET, SO_RCVBUF,
(char *)&sockbufsize,&size);

Note: it is a good idea to always call getsockopt after setting the buffer size, to make sure that the
OS supports buffers of that size. The best place to check it is after the server listen() or client
connect(). Some OS's seem to modify the TCP window size to their max or default at that time.

B.L. Tierney
Lawrence Berkeley National Laboratory

DRAFT: 7 April 6, 2000

Appendix C: Checking for Full vs. Half Duplex mode.
Have your network administrator check what duplex your switch or hub is set to, and then check

your hosts.
On Solaris, here is the command to check the duplex:

 ndd /dev/hme link_mode
Where a return value of 0 = half duplex, and 1 = full duplex
To force to full duplex:

ndd -sec /dev/hme adv_100fdx_cap
ndd -set /dev/hme adv_autoneg_cap 0

To force to half duplex:
ndd -sec /dev/hme adv_100hdx_cap
ndd -set /dev/hme adv_autoneg_cap 0

Please send info on other operating system to bltierney@lbl.gov, and I’ll add them to this
document.

